2015 심장학회 춘계통합 학술대회

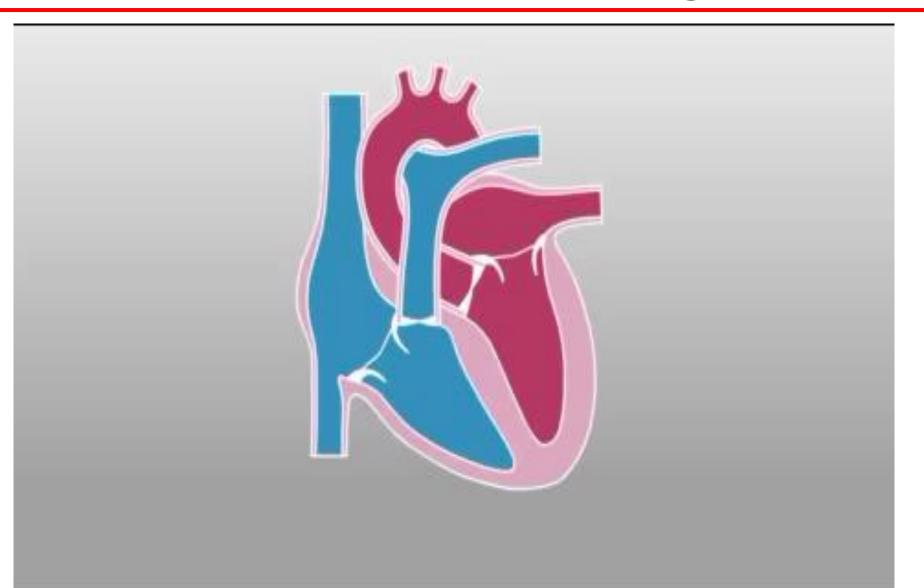
Reverse Remodeling of Heart Failure

중되는대학교병원

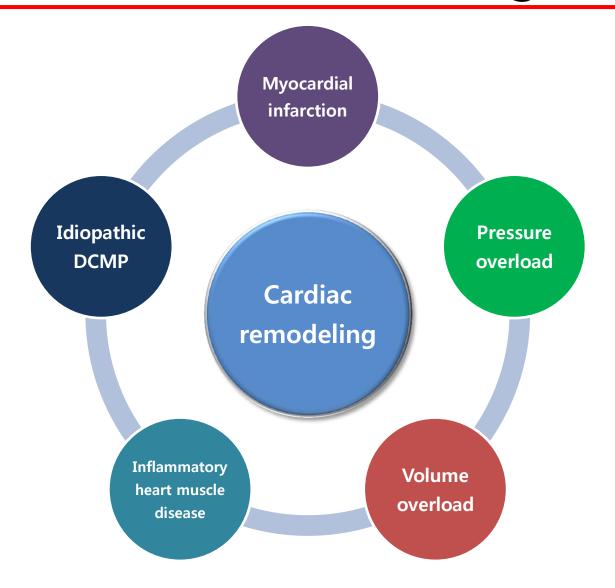
Chonnam National University Hospital Kye Hun Kim, MD, PhD

Contents

Reverse Cardiac Remodeling


Medical Management

Mechanical Management



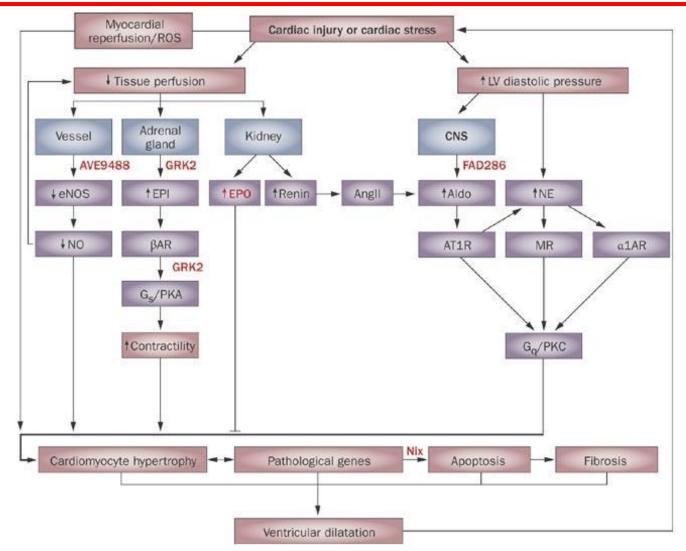
응 전남대학교병원

Cardiac remodeling

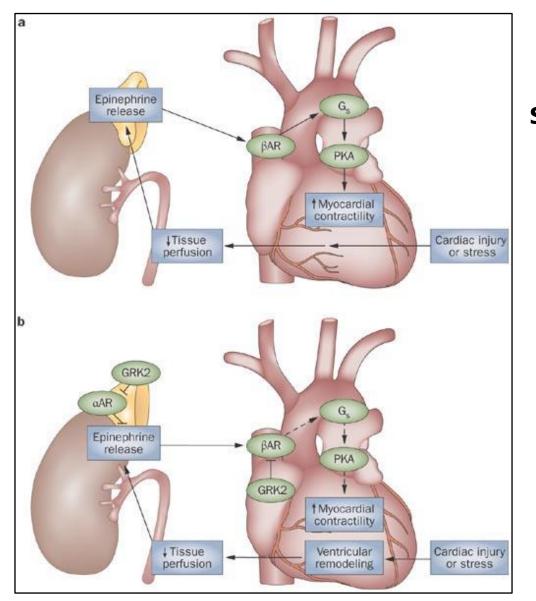
Conditions that may initiate cardiac remodeling



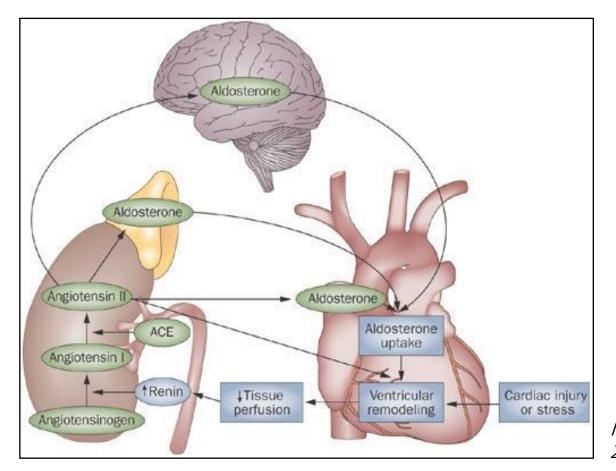
Left ventricular remodeling


Alterations in myocyte biology	Myocardial changes	Alterations in left ventricular chamber geometry
Excitation-contraction coupling	Myocyte loss	LV dilatation
Myosin heavy chain (fetal) gene expression	Necrosis	Increased LV sphericity
β-adrenergic desensitization	Apoptosis	LV wall thinning
Hypertrophy	Autophagy	Mitral valve incompetence
Myocytolysis	Alterations in extracellular matrix	
Cytoskeletal proteins	Matrix degradation	
	Myocardial fibrosis	

J Am Coll Cardiol 2012;60:2465-2472 Braunwald's heart disease, 10th edition


Left ventricular remodeling

Braunwald's heart disease, 10th edition


Nature Reviews Cardiology 2009;6:283-291

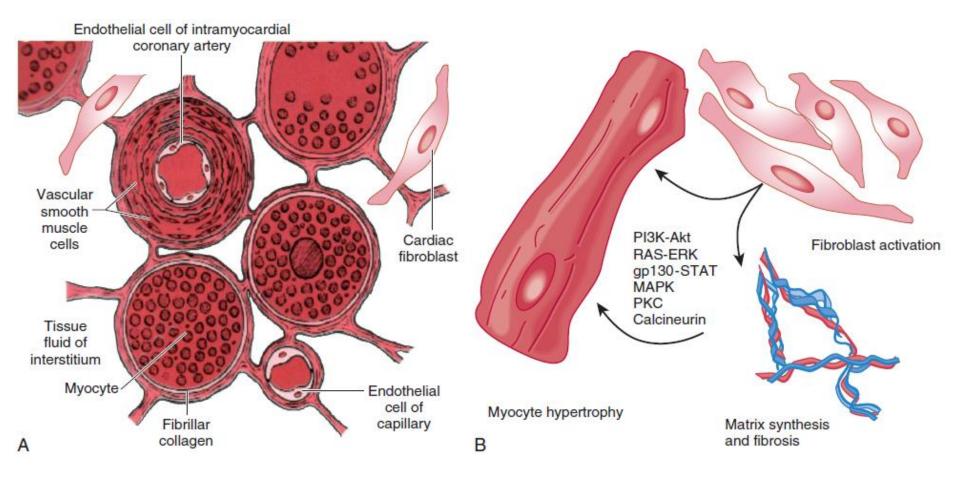
Activation of the sympathetic nervous system

Nature Reviews Cardiology 2009;6:283-291

Activation of the renin-angiotensin-aldosterone system

Nature Reviews Cardiology 2009;6:283-291

- Initially, adaptive changes
- Over the long term, contributes to pathologic remodeling (mostly, RAAS)
- The release of BNP from myocytes may be protective against pathologic remodeling

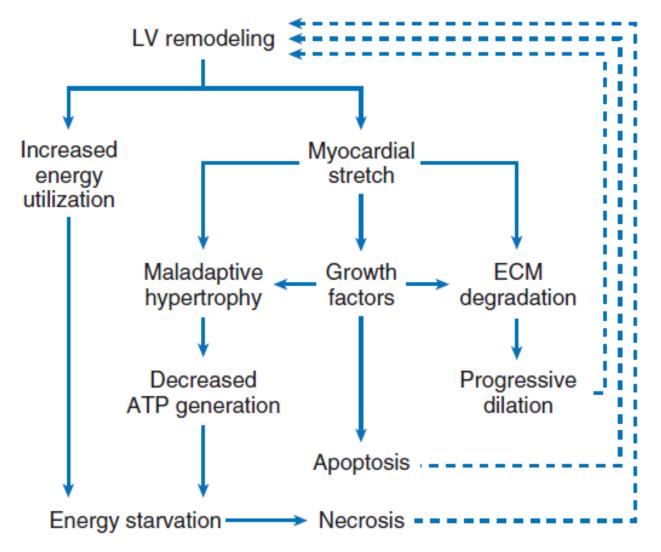

J Am Coll Cardiol 1992;20:248. Proc Natl Acad Sci U S A 2000;97:4239.

Cellular changes

PROTEIN	CHANGE IN HUMAN HEART FAILURE		
Plasma Membrane		Contractile Proteins	
L-type calcium channels	Decreased* [†]	Myosin heavy chain (MYHC)	Reversion to fetal isofom
Sodium/calcium exchanger	Increased* [†]		(↓МҮНС6:МҮНС7)
Sodium pump	Reexpression of fetal	Myosin light chain (MYLC)	Reversion to fetal isoform
	isoforms	Actin	Normal*
Beta ₁ -adrenergic receptor	Decreased* [†]	Titin	Isoform switch (¹ N2BA:N2B),
Beta ₂ -adrenergic receptor	Increased*		hypophosphorylated
Alpha ₁ -adrenergic receptor Increased*		Troponin I	Normal*, hypo- and hyperphosphorylated [‡]
Sarcoplasmic Reticulum		Troponin T	Isoform switch,
SERCA2A	Decreased* [†]		hyperphosphorylated [‡]
Phospholamban	Hypophosphorylated	Troponin C	Normal*
Ryanodine receptor	Hyperposphorylated [†]	Tropomyosin	Normal*
Calsequestrin	Normal*		
Calreticulin	Normal*		

Braunwald's heart disease, 10th edition

Extracellular matrix changes



Braunwald's heart disease, 10th edition

Negative results from LV remodeling

- Increased wall stress
- Afterload mismatch
- Episodic subendocardial hypoperfusion
- Increased oxygen utilization
- Functional mitral regurgitation
- Worsening hemodynamic overload
- Stretch-induced activation of
 - Maladaptive signal transduction pathways
 - Maladaptive gene programs

LV remodeling is self-amplifying

Braunwald's heart disease, 10th edition

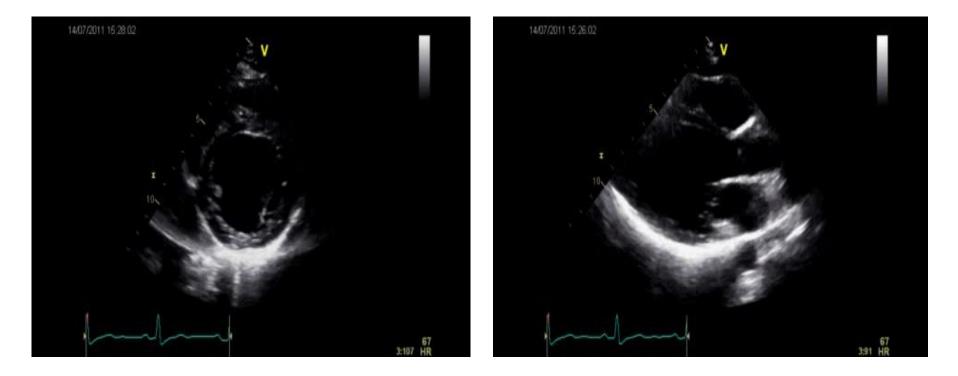
Contents

Reverse Remodeling

Medical Management

Mechanical Management

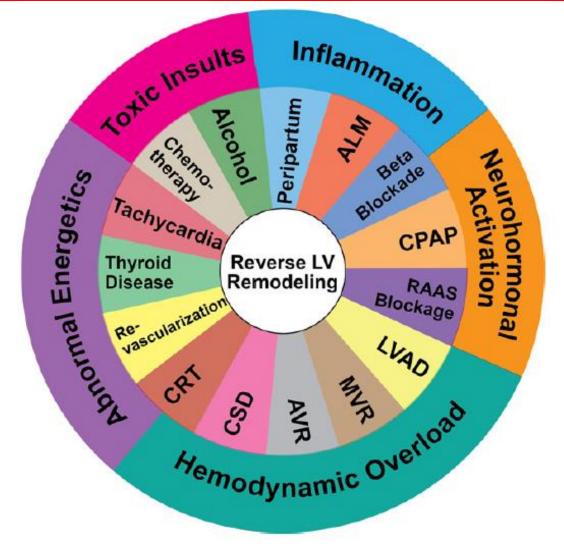
응 전남대학교병원


Kong O O (60/M): Dyspnea

NT-Pro BNP: 7371 pg/ml

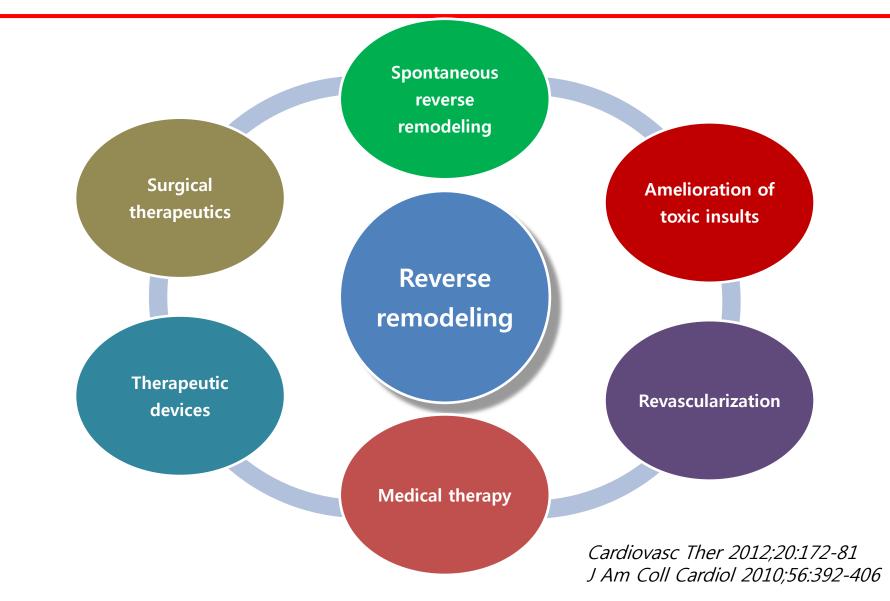
Kong O O (60/M): FU Echocardiography

NT-Pro BNP: 420 pg/ml


Reverse remodeling

• **Regression** of pathological myocardial hypertrophy, chamber shape distortions, and dysfunction

 First used to describe the leftward shift in the LV enddiastolic pressure-volume curve of the failing heart after hemodynamic unloading with a left ventricular assist device (LVAD) or a myocardial wrap with the latissimus dorsi muscle


> *Circulation 1995;91:2314-8 Circulation 1995;91:2717-20*

Reverse remodeling in clinical settings

J Am Coll Cardiol 2012;60:2465-2472

Reverse remodeling

Contents

Reverse Remodeling

Medical Management

Mechanical Management

응 전남대학교병원

Spontaneous reverse remodeling

Peripartum cardiomyopathy (PPCM)

• About 50% of patients with PPCM recover baseline ventricular function within 6 months of delivery

Subtype	n	Early death	Early mortality	Late death	Overall mortality
Acute					
Common	9	2	22%	0	22%
Fulminant	21	9	43%	1	48%
Chronic					
Persistent	3	1	33%	0	33%
Recurrent	2	1	50%	0	50%
Latent	13	5	38%	3	62%

Acute lymphocytic myocarditis

Int J Cardiol 2007;118:295-303. Jpn Circ J 2001;65:961-4.

Long-term exercise training

Improved LV function after 6 months,

		aining Group =45)		ol Group =44)
	Baseline	6 Months	Baseline	6 Months
EDV, mL/m ²	142±26	135±26*	147±41	156±42*†
ESV, mL/m ²	107±24	97±24*	110±34	118±34*‡
EF, %	25±4	29±4*	25±4	25±5‡

And was associated with improved QOL.

		aining Group =45)	Control Group (n=44)		
	Baseline	6 Months	Baseline	6 Months	
Clinical score	7.0±2.7	5.3±2.1*	7.2±2.1	7.2±2.1†	
Symptoms perceived during daily physical activity	13.4±1.8	10.9±1.3*	13.8±1.4	13.4±1.8‡	

Circulation 2003;108:554-559

Amelioration of toxic insults

Reverse remodeling from tachycardia-induced CMP

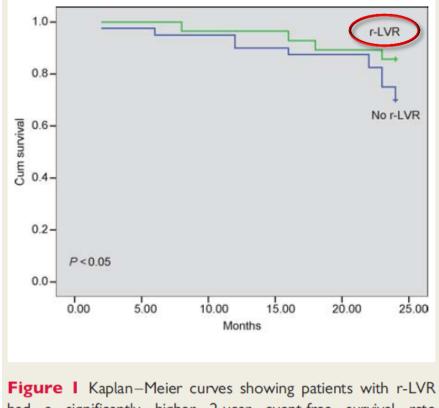
Але	252	V1222-021 20 01-	Time*	2	Preser	ntation		_ The _	1	After treatme	nt	Time [†]	Recu	Sudden	
Patient	Age (years)	Sex	Arrhythmia	(days)	HR (bpm)	NYHA	BNP	EF	-rapy	HR (bpm)	NYHA	EF	(days)		death
1	40	F	AF	20	175	2	103	0.25	Rate	78	1	0.53	14	N	N
2	59	F	AF	30	130	3	760	0.28	Rate	60	1	0.54	34	Y	N
3	67	М	AF, WPW	6	170	2	N/A	0.27	Both	86	1	0.56	64	N	N
4	59	Μ	AFL	20	170	2	322	0.35	Rate	60	1	0.51	56	N	N
5	52	Μ	AFL	7	150	2	73	0.29	Rate	80	1	0.65	62	Y	N
6	49	F	AFL	30	160	3	305	0.51	Rate	70	1	0.67	35	N	N
7	72	Μ	AFL	14	160	3	1330	0.25	Rate	76	1	0.52	240	N	Y
8	63	М	AFL	12	150	3	N/A	0.47	RF	74	1	0.65	21	N	N
9	50	М	AFL, WPW	14	100	2	14	0.31	RF	70	1	0.58	21	N	N
10	30	М	AVNRT	28	190	2	788	0.25	RF	70	1	0.50	21	N	N
11	12	F	IVT	120	160	2	857	0.17	RF	60	1	0.54	50	N	N
12	70	М	IVT	_1	200	2	N/A	0.43	RF	66	1	0.51	24	N	N
Mean	51.9 ± 17.6			26.0 ± 34.3	156.3 ± 28.7	2.3 ± 0.5 ±	505.7 ± <mark>4</mark> 49.1	31.9 ± 10.1	2) (70.8 ± 8.4	1.0 ± 1.0	54.3 ± 10.4	53.5 ± 61.3	i.	

* Time from the occurrence of symptoms due to tachyarrhythmia to hospitalization due to congestive heart failure. [†] Time from hospitalization to normalization of left ventricular dysfunction.[‡] a patient did not have any prior symptoms suggesting tachyarrhythmia. Arrhythmia indicates arrhythmia believed to be the cause of tachycardia-induced cardiomyopathy; HR, heart rate; NYHA, New York Heart Association functional class; BNP, brain natriuretic peptide; EF, ejection fraction; AF, atrial fibrillation; WPW, Wolff-Parkinson-White syndrome; AFL, atrial flutter; AVNRT, atrioventricular nodal reentrant tachycardia; IVT, idiopathic ventricular tachycardia from the right ventricular outflow tract; and RF, radiofrequency catheter ablation.

Int Heart J 2008;49:39-47.

Revascularization

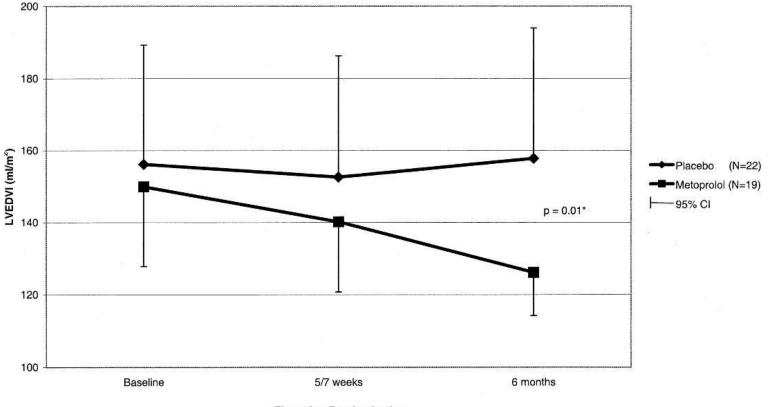
Primary treatment of an STEMI induced a >10% Increased in LVEF in 39% of patients


 Table 2 Baseline clinical, angiographic, and echocardiographic parameters in the reverse left ventricular remodelling

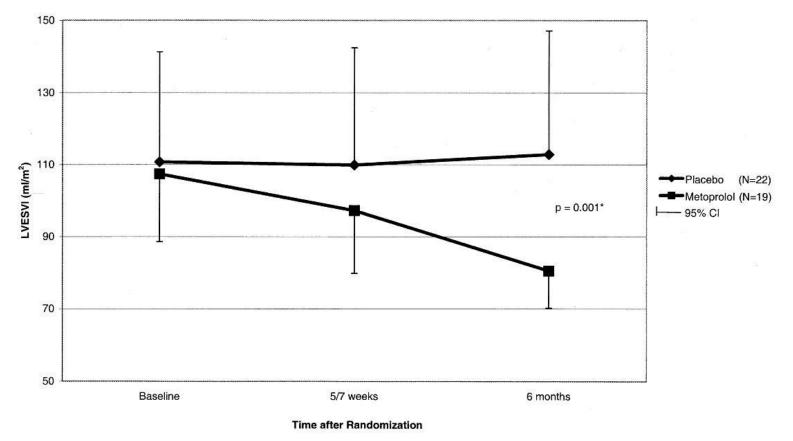
 (r-LVR) group when compared with the no reverse left ventricular remodelling (no r-LVR) group

	r-LVR (43 pts)	No r-LVR (67 pts)	р
Mean age (years)	57 <u>+</u> 9	60 <u>+</u> 11	0.24
Male, n (%)	38 (88)	54 (81)	0.861
Hypertension, n (%)	33 (77)	39 (60)	0.454
Diabetes, n (%)	4 (9)	19 (19)	0.082
Smokers, n (%)	30 (70)	39 (58)	0.671
Hypercholesterolaemia, n (%)	19 (44)	25 (37)	0.775
Family history of CAD, n (%)	12 (30)	17 (25)	0.991
ST-segment reduction (%)	65 <u>+</u> 33	42 ± 51	0.02
Killip Class>1, n (%)	10 (24)	17 (26)	0.981

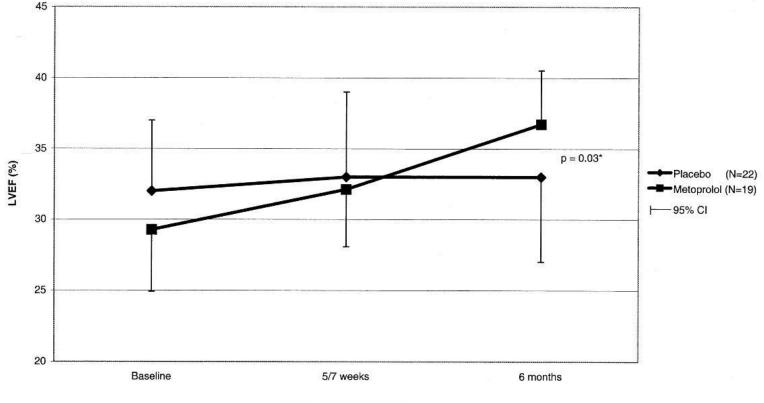
Revascularization


... and it brought better survival rate.

had a significantly higher 2-year event-free survival rate (log-rank test P < 0.05) than those without r-LVR.

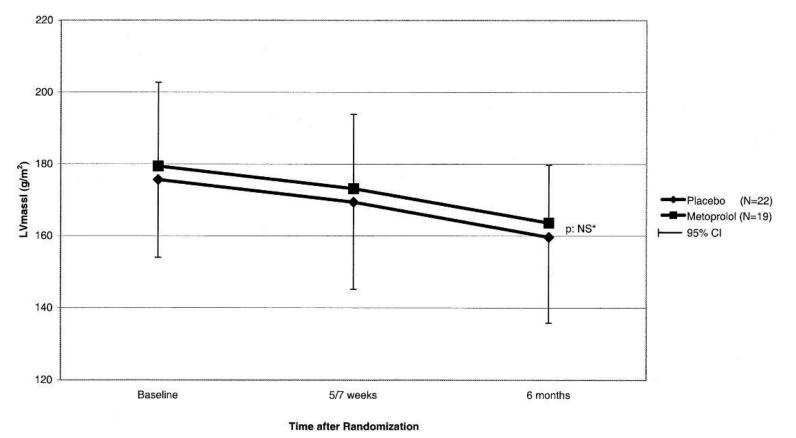

Eur Heart J 2009;30:566-575

Long-term metoprolol therapy showed evidence of reverse remodeling in chronic heart failure.

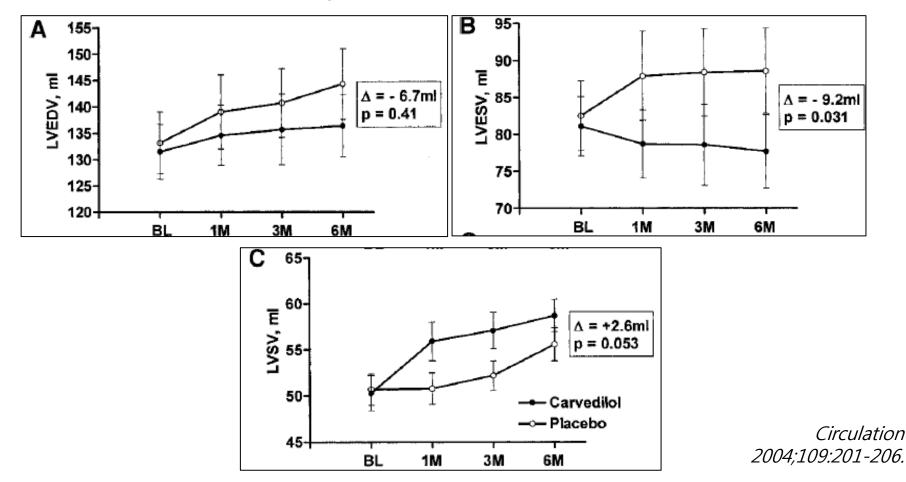


Time after Randomization

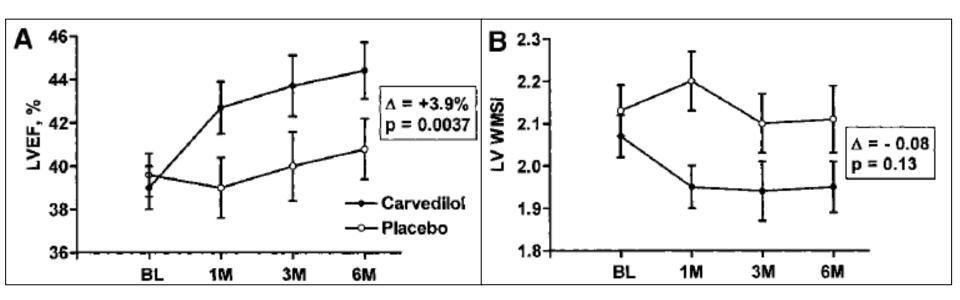
Long-term metoprolol therapy showed evidence of reverse remodeling in chronic heart failure.



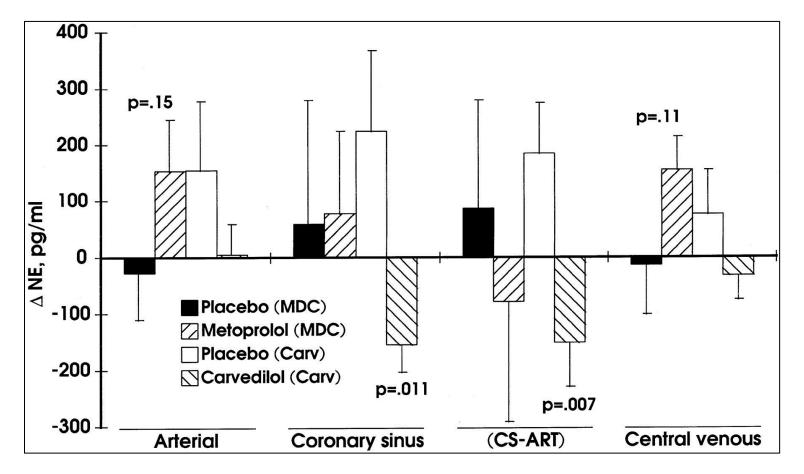
Long-term metoprolol therapy showed evidence of reverse remodeling in chronic heart failure.


Time after Randomization

Long-term metoprolol therapy showed evidence of reverse remodeling in chronic heart failure.


β-blockers

Carvedilol also attenuated cardiac remodeling after myocardial infarction.



Carvedilol also attenuated cardiac remodeling after myocardial infarction.

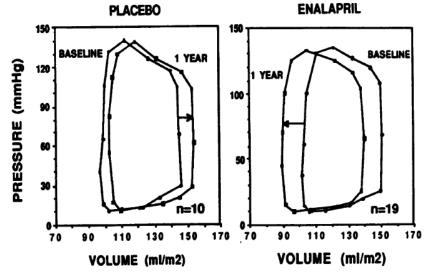
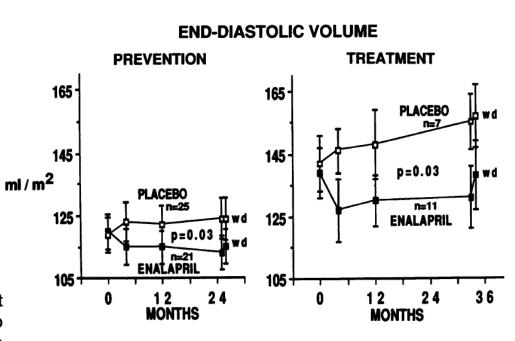
Circulation 2004;109:201-206.

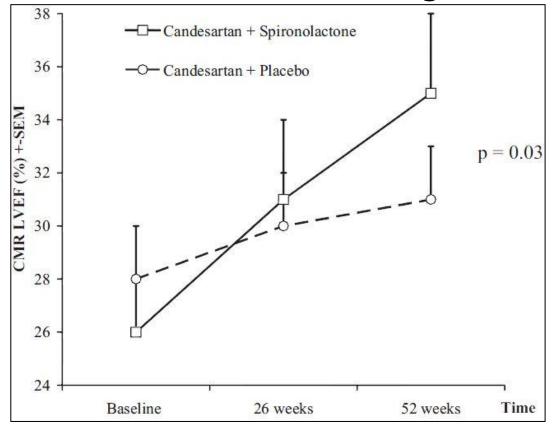
Carvedilol significantly decreased level of norepinephrine,

Circulation 1996;94:2817-25.

Renin-angiotensin-aldosterone system (RAAS) antagonism

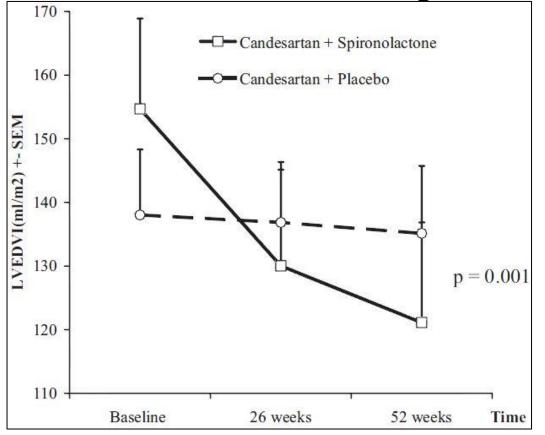
Antagonism of the RAAS prevents forward remodeling in patients with systolic dysfunction.


FIG 1. Mean left ventricular pressure-volume loops at baseline and 1 year in patients randomized to placebo and to enalapril. At 1 year, the entire curve was shifted to the right for the placebo group and to the left for the enalapril group.

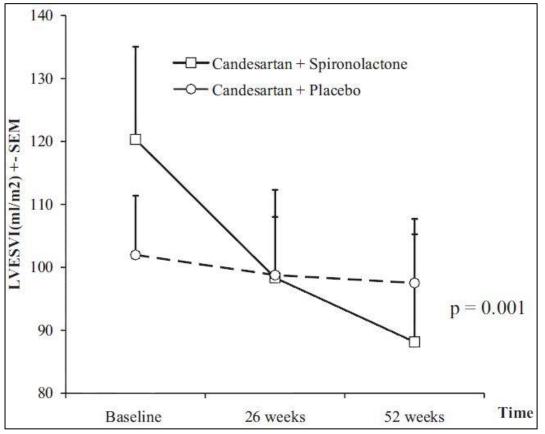
Circulation 1993;88:2277-83.

Renin-angiotensin-aldosterone system (RAAS) antagonism


More intensive RAAS antagonism brought definite reverse remodeling.

J Am Coll Cardiol 2007;50:591-596.

Renin-angiotensin-aldosterone system (RAAS) antagonism


More intensive RAAS antagonism brought definite reverse remodeling.

J Am Coll Cardiol 2007;50:591-596.

Renin-angiotensin-aldosterone system (RAAS) antagonism

More intensive RAAS antagonism brought definite reverse remodeling.

J Am Coll Cardiol 2007;50:591-596.

Vasodilator therapy

Combination of hydralazine and isosorbide dinitrate improves left ventricular systolic function.

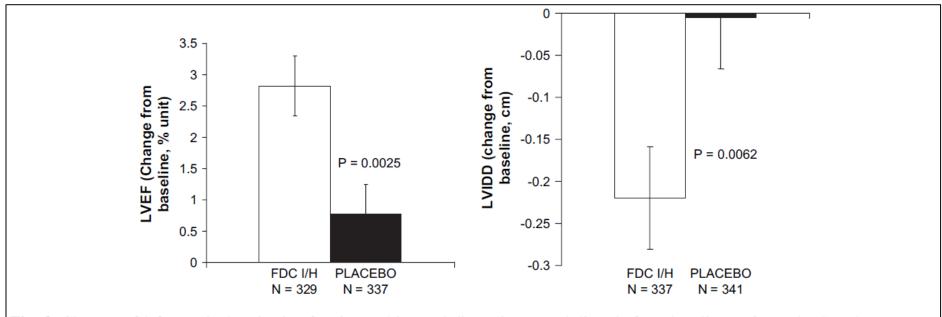


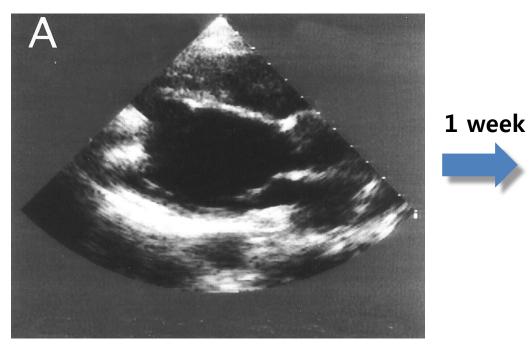
Fig. 3. Changes of left ventricular ejection fraction and internal dimension at end-diastole from baseline at 6 months. Results represent mean \pm SEM.

J Card Fail 2007;13:331-9.

Contents

Reverse Cardiac Remodeling

Medical Management

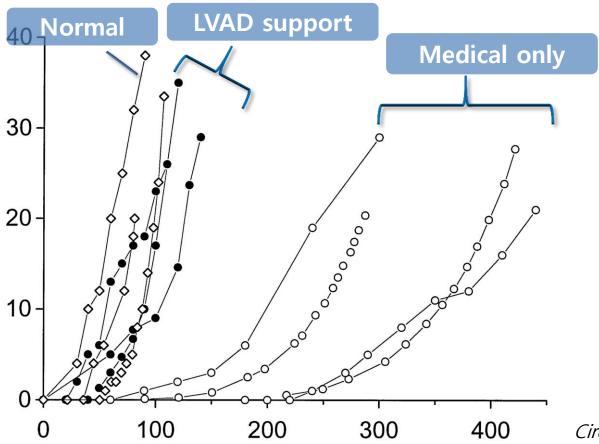

Mechanical Management

응 전남대학교병원

Left ventricular assist devices (LVAD)

LVAD provides substantial volume unloading of the heart

ek


LVEDd > 60 mm

LVEDd ≒ 30 mm Thickened LV wall

Circulation 1995;91:2717-2720

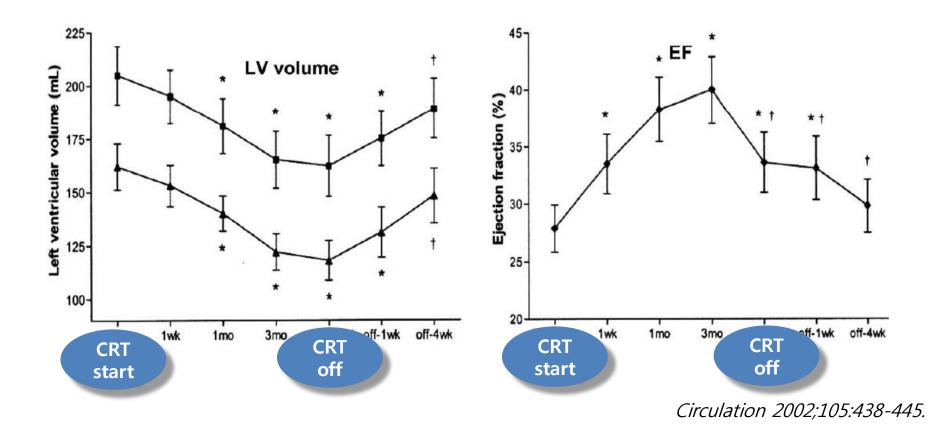
Left ventricular assist devices (LVAD)

LVAD provides better EDPVR in patients with endstage heart failure, than medical therapy only

Circulation 1995;91:2717-2720

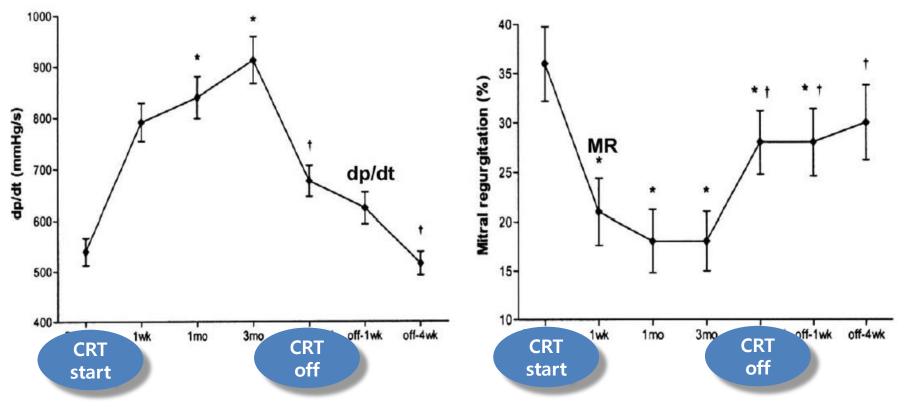
Left ventricular assist devices (LVAD)

LVAD induces


Regression of cellular hypertrophy

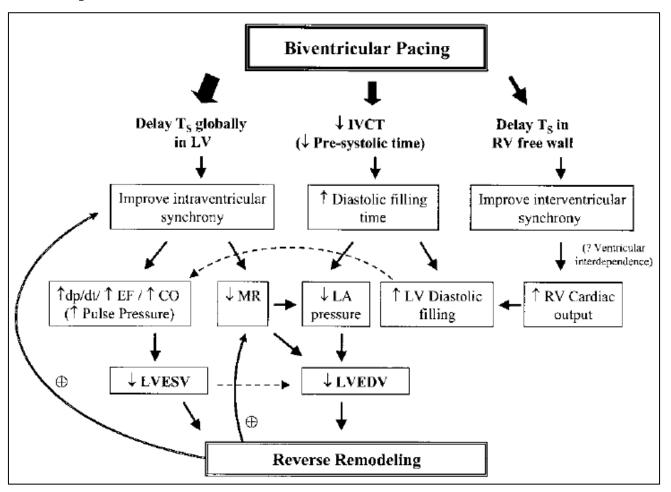
Variable	HF	HF/LVAD	Nonfailing
Rods, %	30±3	24±5	27±8
Volume, µm ³	51 888±2067	37 443 ±3307 ¹	27 947±1980
Length, µm	201±6	161 ± 7^{1}	136±4 ¹
Width, µm	31.5±0.9	25.1 ± 1.5^{1}	26.2±1.3 ¹
Thickness, µm	10.9±0.7	11.8 ±0.7	10.1±1.0
Length-to-thickness ratio	21.0±1.7	14.2 ± 1.3^{1}	14.0±1.3
Mononucleated cells, %	48±3	50 ±2	75±2
Binucleated cells, %	51±3	50±2	25 ±2

Circulation 1998;98:656-662.


Cardiac resynchronization therapy (CRT)

CRT decreased LV volume and increased LVEF, all of which were reversed when CRT was turned off.

Cardiac resynchronization therapy (CRT)


CRT improved dP/dt and mitral regurgitation, all of which were reversed when CRT was turned off.

Circulation 2002;105:438-445.

Cardiac resynchronization therapy (CRT)

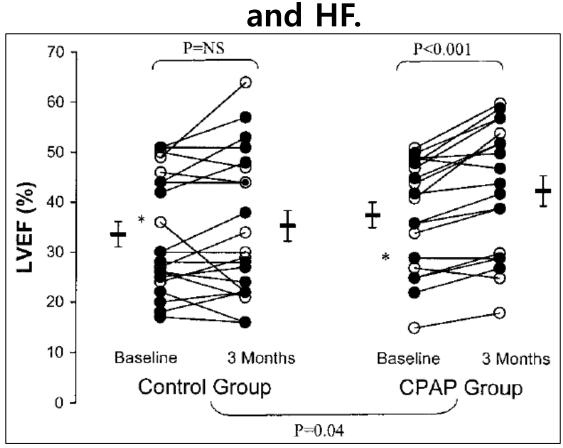
Proposed mechanisms of benefit of CRT

Circulation 2002;105:438-445.

Cardiac resynchronization therapy (CRT)

Amelioration of dyssynchronous myocardial contraction with CRT has been associated with substantial regression of myocardial dilatation and hypertrophy, presumably by reducing LV wall stress.

Table 2 Reverse remodeling in CRT trials


Trial	No. of patients	NYHA	Rx Duration	ΔLVEDD/V	Δ LVESD/V	ΔLVEF	ΔMR
MUSTIC [82]	34	III	12 mo.	↓—14% (D)	↓—18% (D)	_	↓—27%
MIRACLE-ICD [83]	369	III–IV	6 mo.	↓—6.2% (V)	_	↑+2.1%	↓—7.3%
CARE-HF [83]	813	III–IV	18 mo.	_	↓—21% (V)	↑+6.9%	↓—20%
REVERSE [84,85]	287	μII	24 mo.	↓—30% (V)	↓—15% (V)	↑ +3.8%	_
MADIT-CRT [86]	1820	μII	2.4 yr.	↓—21% (V)	↓—35% (V)	↑+11%	-

MUSTIC, Multisite Stimulation in Cardiomyopathies; MIRACLE-ICD, Multicenter InSync ICD Randomized Clinical Evaluation; CARE-HF, Cardiac Resynchronization in HF; REVERSE, Resynchronization Reverses Remodeling in Systolic LV Dysfunction; MADIT-CRT, Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy; Δ LVEDD/V, change in left ventricular end-diastolic diameter (D) or volume (V); Δ LVESD/V, change in left ventricular ejection fraction; Δ MR, change in mitral regurgitation grade.

> *Circulation 2003;107:28-31. Cardiovasc Ther 2012;30:172-181.*

Continuous positive airway pressure (CPAP)

CPAP for 3 months improved ventricular function and reduced sympathetic activity in patients with OSA

Am J Respir Crit Care Med 2004;169:361-6.

Surgical therapy

Batista procedure (partial left ventriculectomy)

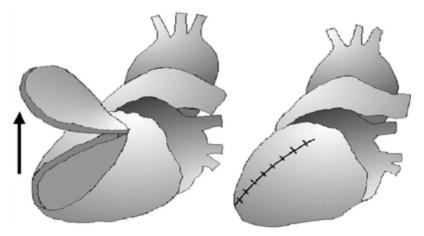


Fig. 1 - Partial left ventriculectomy

- Restoration of a normal ratio between wall thickness and the radius of the LV, to normalize systolic wall stress
- High perioperative mortality
- Outcome in terms of clinical improvement is impredictable

J Card Surg 1996;11:96-7.

Surgical therapy

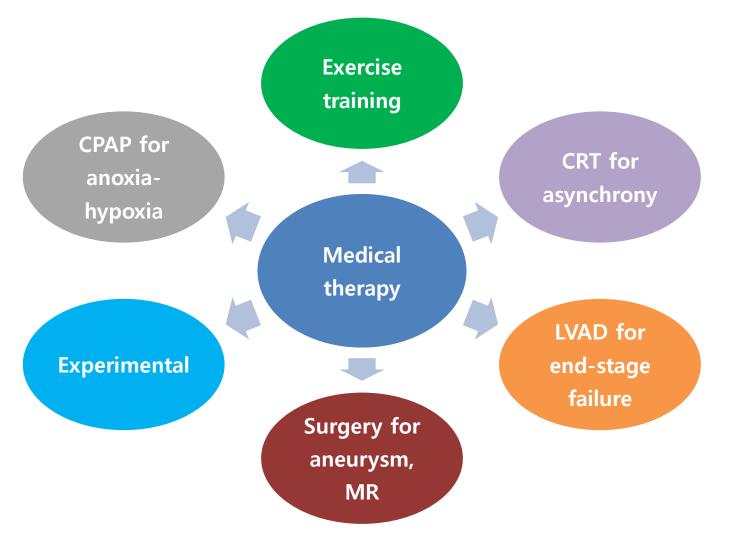
Mitral annuloplasty at the time of CABG brought greater decreases in LV dimensions and increases in LVEF.

	Before surgery	End of CPB	1 week	3 ± 0.5 months	13 ± 7 months ^a	P-value
Total pts, <i>n</i>	38	38	38	38	34	8-
Total deaths, <i>n</i>	12 C	-	1	3	5	8-
Survival, %	-	100	97	92	85	-
NYHA	3.3 ± 0.6	-	-	1.8±0.6	1.5 ± 0.6	< 0.001
MR, grade	3.6 ± 0.5	0.4 ± 0.4	0.5 ± 0.5	0.6 ± 0.6	0.6 ± 0.8	< 0.001
LVEDD, mm	60±7	2	57 <u>+</u> 8	57 <u>+</u> 8	57 <u>+</u> 8	< 0.001
LVESD, mm	47±9	2	44±10	43±10	42 <u>+</u> 9	< 0.001
FS, %	23±9	-	24 <u>+</u> 8	26±8	28 ± 10	< 0.001
LA, mm	51 ± 5	-	48 ± 5	46±4	45 <u>+</u> 4	< 0.001
LVEDV, ml	188 ± 33	-	173 ± 36	172±35	171 <u>+</u> 30	< 0.001
LVESD, ml	129±35	2	117 ± 34	112±37	105 ± 33	< 0.001
EF, %	31±8	2	33±8	36±10	39±10	< 0.001
LCH, mm	-	8±1	8±1	8±2	8±2	ns
MVA, cm ²		2.6 ± 0.5	26 ± 0.5	-	-	ns

CPB, cardiopulmonary bypass; NYHA, New York Heart Association; MR, mitral regurgitation; LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimension; FS, fractional shortening; LA, left atrium; LCH, leaflet coaptation height; MVA, mitral valve area
^a Still missing: *n*=4 patients [11%].

Eur J Cardiothoracic Surg 2005;27:1011-1016.

BEYOND REVERSE CARDIAC REMODELING


Determinants of reverse remodeling

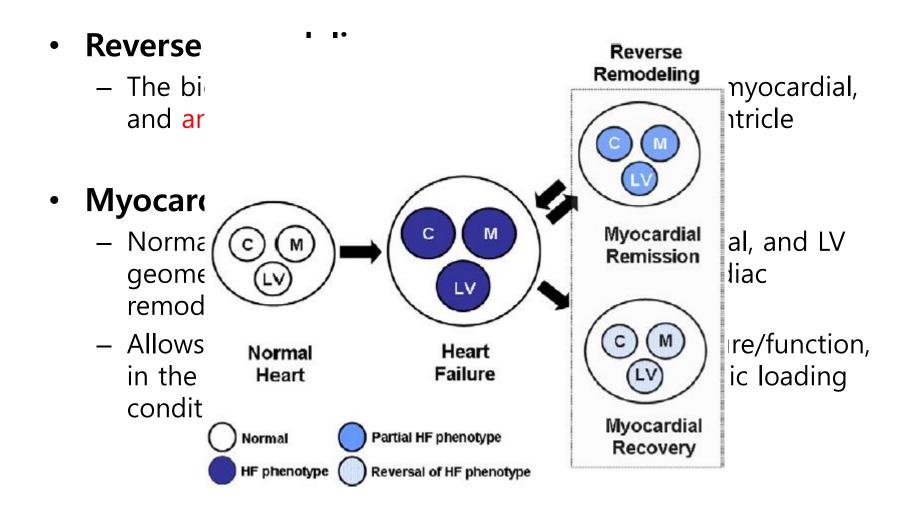
		BETA BLOCKING		
COMPONENT	ACE INHIBITOR	AGENT	LVAD	CSD
Myocyte Defects				
Hypertrophy	Decreased	Decreased	Decreased	Decreased
Myocytolysis	ND	Decreased	Decreased	ND
Excitation-contraction coupling	Increased	Increased	Increased	Increased
Fetal gene expression	Decreased	Decreased	Decreased	Decreased
Beta-adrenergic desensitization	Decreased	Decreased	Decreased	Decreased
Cytoskeletal proteins	ND	ND	Increased	ND
Myocyte contractility	ND	Increased	Increased	Increased
Myocardial Defects				
Myocyte necrosis	Decreased	Decreased	Decreased	ND
Myocyte apoptosis	Decreased	Decreased	Decreased	Decreased
MMP activation	Decreased	Increased	Decreased	Decreased
Fibrosis	Decreased	Decreased	Increased	Decreased
Other				
LV volume	Stabilized	Decreased	Decreased	Decreased

CSD = cardiac support device; LVAD = left ventricular assist device; ND = not done.

Braunwald's heart disease, 10th edition

Multimodal therapeutical possibilities

Eur Heart J 2004;6:D66-D78.


■ Reverse remodeling ■ myocardial recovery?

Hemodynamic unloading and reverse remodeling only **rarely** result in myocardial recovery.

			Adjuvant Antiremodeling	Protocol for Monitoring	Unioading Duration,	Recovery, n (%)		
Study, Year(s)	Design	N	Drug Protocol	Cardiac Function	Months	Overall	Nonischemic	HF Recurrence/Follow-Up
U.S multicenter, 2007	Р	67	Not standardized	Yes	4.5	6 (9)	5 (13.5)	Freedom from death or Tx 100%/6 months
Berlin group, 2008, 2010–2012, 2010	R	188	Not standardized	Yes	4.3	35 (18.6)	35 (18.6)	Freedom from recurrent HF 74% and 66%/3 and 5 yrs, respectively
Harefield group, 2006	Р	15	Yes	Yes	10.6	11 (73)	11 (73)	Freedom from recurrent HF 100% and 89%/1 and 4 yrs, respectively
Harefield group, 2011	Р	20	Yes	Yes	9.5	12 (60)	12 (60)	Freedom from recurrent HF 83.3%/3 yrs
University of Athens- Harefield group, 2007	Р	8	Yes	Yes	6-10	4* (50)	4* (50)	Freedom from recurrent HF 100%/2 yrs
Gothenburg group, 2006	Р	18	Not standardized	Yes	6.7	3 (17)	3 (20)	Freedom from recurrent HF or Tx 33%/8 yrs
Pittsburgh group, 2003	R	18	Not standardized	Yes	7.8	6 (33)	5 (38)	Freedom from recurrent HF 67%/1 yr
Osaka group, 2005	R	11	Not standardized	N/A	15.1	5 (45)	5 (45)	Freedom from recurrent HR 100%/8-29 months
Pittsburgh group, 2010	R	102	N/A	N/A	4.9	14 (13.7)	14 (13.7)	Freedom from recurrent HF or death 71.4%/5 yrs
Multicenter, 2001	R	271	N/A	N/A	1.9	22 (8.1)	22 (8.1)	Freedom from recurrent HF or death 77%/3.2 yrs
Columbia group, 1998	R	111	N/A	N/A	6.2	5 (4.5)	4 (8)	Freedom from recurrent HF or death 20%/15 months

J Am Coll Cardiol 2010;56:392-406

Reverse remodeling & recovery

J Am Coll Cardiol 2010;56:392-406

Reverse remodeling does not lead to a normal heart

- Gene expression profiling studies
 - Only ~5% of dysregulated genes revert appreciably to normal after LVAD support, despite typical morphological and functional responses to LVAD support
- Force generation
 - Still less than nonfailing heart, although maximal Ca²⁺saturated force generation is improved after LVAD support

Circ Heart Fail 2011;4:224-33 Circulation 2001;104:I229-32 N Engl J Med 2006;355:1873-84

Reverse remodeling does not lead to a normal heart

• Extracellular matrix (ECM)

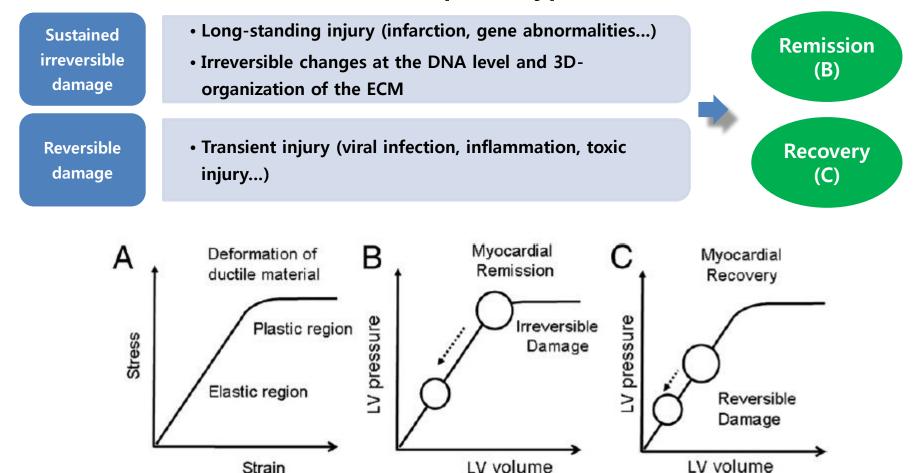
- 3D organization and interactions of ECM with other cardiac structures are not essentially normalized
- Chamber radius to wall thick ratio remains elevated (nearly twice normal)

Normalization after LVAD

- EDPVRs are shifted leftward after LVAD support
- However, LV wall thickness/LV wall radius ratio does not return to normal
 - → myocardium is still exposed to physiological stress

Reverse remodeling does not lead to a normal heart

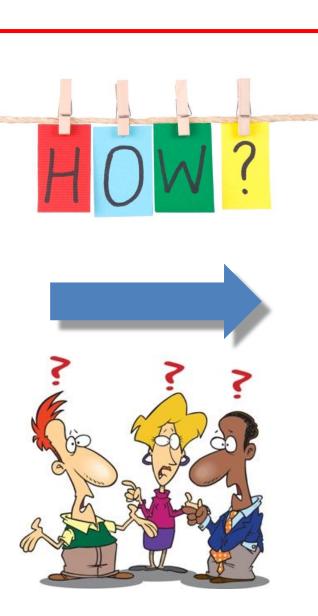
The regression of the heart failure phenotype and the accompanying return toward a more normal cardiac phenotype during reverse remodeling


DOES NOT

Signify that the cellular/molecular biology and physiology of these hearts is normal.

J Am Coll Cardiol 2012;60:2465-72.

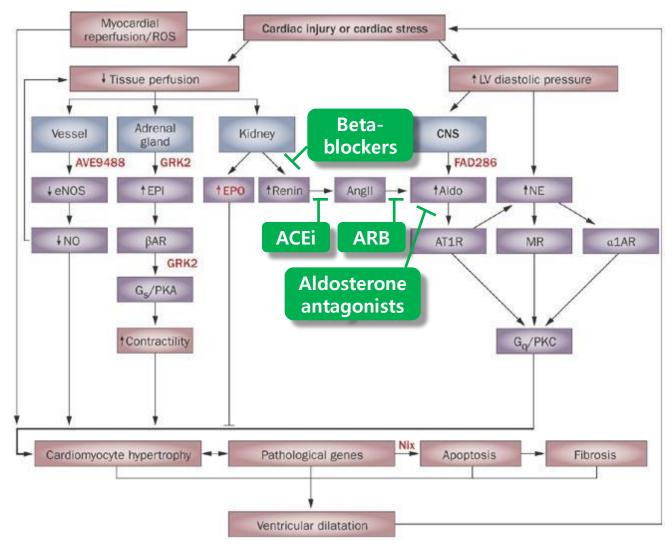
Stress vs. strain diagram


Reversal of the heart failure phenotype in hearts that have...

J Am Coll Cardiol 2010;56:392-406

We still do not understand...

Reverse cardiac remodeling : A hard way to go



Thanks for your attention !!

Windle altering

my silling states it has a

Molecular targets

Nature Reviews Cardiology 2009;6:283-291